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Abstract
In this study, a variable-resolution optical measurement system (VROPMS)
based on triangulation measurement technology is proposed. The VROPMS
optical scanning probe is composed of dual CCD cameras fitted with zoom
lenses and a line laser diode projector. A flexible and novel calibration
procedure for VROPMS is developed to acquire the system parameters
quickly and accurately. The central position of the reflected laser image is
calculated using Gaussian function least-squares fitting of the beam
intensity. Subpixel resolution can thus be acquired. Experimental
calibration results show that the higher the lens magnification, the finer the
derived system resolution. The best accuracy at the zoomed focus position is
about 0.02 mm. This system can flexibly zoom in or out to measure a 3D
object profile in sections according to the approximate surface profile.
Varied mesh images taken from different zoom positions by VROPMS can
be patched using the image matching technique to reconstruct the entire
profile. A human sculpture with a complex surface profile is measured using
VROPMS as a practical illustration of the effectiveness of the system.
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1. Introduction

Optical measurement systems using the triangulation principleQ.1

to acquire the profile of 3D objects have been widely used.
The most commonly used system projects a laser stripe onto
the surface and uses a charge-coupled device (CCD) camera
to capture the distorted line, and then converts it to a smooth
spatial line using a curve fitting algorithm. By stepping the
optical detector to prescribed positions, a series of deformed
line images can be acquired. In this kind of system the
resolution per pixel and the field of view are always fixed. In
general, optical profile measurement systems have all been of
the fixed focus type, mounted on a fixed three-axis stage for line
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scanning [1–3]. Unless the system resolution can be changed
flexibly, potential applications for this optical measurement
system are restricted.

In this study, a variable resolution profile measurement
system (VROPMS) based on scanning triangulation measure-
ment technology [4] was developed. This new system provides
variable focal lengths by adding a zoom lens to each of the con-
ventional dual CCD camera systems. Theoretically, the higher
the lens magnification, the finer the camera resolution that can
be achieved. Using a zoom lens, the system’s field of view can
be further localized such that a larger curvature in a smaller
area can be detected and a more approximate surface model
can be reconstructed. In other words, this system can flexi-
bly zoom in or out to measure a 3D object profile in sections
according to the approximate requirements for a given surface
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Figure 1. Principle of triangulation measurement.

profile. This research developed a software package so that the
variable mesh images of an object acquired at various zoom
positions can be matched using an image mapping technique
to reconstruct the entire profile.

2. Principle of triangulation measurement

The principle of triangulation measurement with one camera
is shown in figure 1. In the figure, P(x, y, z) is a point in the
world coordinate (X, Y, Z) and P ′(u, v) is its focused point
in the image plane (U, V ). According to geometrical optics
and similar triangles, the coordinates of point P(x, y, z) can
be calculated using

f

u
=

|z|

x
(1)

b + x

|z|
= cot θ (2)

where f is the focal length, θ is the angle between the X -axis
and light direction and b is the distance between the light source
and the lens optical centre O .

From equations (1) and (2), we can get

x =
bu

f cot θ − u
. (3)

Similarly, in the Y -direction we have

f

v
=

|z|

y
and

x

y
=

u

v

which yields

y =
bv

f cot θ − u
(4)

z =
−b f

f cot θ − u
. (5)

Therefore, the coordinates of point P(x, y, z) are
(

bu

f cot θ − u
,

bv

f cot θ − u
,

−b f

f cot θ − u

)

.

In principle, a system with one CCD camera can grab the
projected line image on the surface and fit one free-form line at
a time. Having scanned the entire image, an entire free-form
surface profile of the object can be constructed. In practice,
one CCD camera cannot always successfully capture the line
image at each position because the inspected surface may have
steep slopes and protruding profiles. To solve this problem, a

Figure 2. Scanning head of the VROPMS.

Table 1. Scanning head specifications of the VROPMS.

Lowest Highest

Numerical aperture 0.006 0.02
Magnification 0.071× 0.50×

Field of view 67.4 mm × 89.8 mm 9.5 mm × 12.6 mm
Depth of field 30 mm 2.7 mm
Working distance 350 mm 350 mm

system with two CCD cameras is often adopted together with a
line laser diode. Such a built-up optical head can scan over the
object profile linearly or rotationally using the assisted moving
stages.

3. Principle and calibration method of the VROPMS

3.1. The VROPMS system

In this study, the scanning head of the VROPMS is a laser diode
line projector with two CCD cameras fitted with an OPTEM
ZOOM 70 with a 0.38× TV tube and 0.25× auxiliary lens,
as shown in figure 2. This optical scanning probe is mounted
on a linear stage to execute the line-scanning measurement.
The CCD camera has 768(H) × 494(V) pixels and the laser
diode is less than 5 mW with a wavelength of about 635 nm.
The framegrabber displays with a resolution of 480 × 640.
The optical limits, such as the field of view and depth of
field, are varied with different zooms. Table 1 lists the system
specifications. The resolution of the original focus position is
about 0.14 mm pixel−1 (67.4 mm, 480 pixel). The motorized
zoom lens can be adjusted to any specified magnification. In
this study, the magnification factors (m) are controlled from 1
to 3 with incremental steps.

Figure 3 shows a schematic diagram of a 2D pinhole
camera model, where O ′ is the projection centre and R is the
retinal plane. The optical axis is the line passing through the
projection centre O ′ and perpendicular to the retinal plane.
The intersection point of this line with the retinal plane is
the principal point. The image position A∗(U, V ) of a space
point A(x, y, z) will be influenced by the camera parameters.
There are two groups of parameters in a pinhole camera. The
first group consists of intrinsic parameters and the second
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Figure 3. Schematic diagram of a 2D pinhole camera image model.

group contains extrinsic parameters. The extrinsic parameters
characterize the position and orientation of the camera while
the intrinsic parameters characterize the camera’s projection
properties. Dawson-Howe [4] and Rosenfield [5] presented the
calibration procedure for the extrinsic parameters. Fryer [6],
Curry [7], Ziemann [8], Hallert [9] and Brown [10] focused
on the calibration of the lens distortion and the intrinsic
parameters. In a zoom lens system, the extrinsic parameters are
constant, but the intrinsic parameters will vary subject to the
amount of zoom. Therefore, the VROPMS system parameters
must be adjusted simultaneously with respect to the various
zoom positions for exact computation of space coordinates.

The five intrinsic parameters are P0, Q0, Su , Sv and
α(P0, Q0) indicates the coordinate of the principal point. Su

and Sv are the horizontal and vertical scale factors respectively,
and α is the skew angle between the coordinate axes in the
pixel coordinate system. Maybank [11] and Burner [12]
observed that some of the intrinsic parameters were invariant
with magnification, namely the aspect ratio Su/Sv and the
skew angle α. Therefore, there are only three variable
intrinsic parameters when m varies. Faugeras [13] found that
calibrated parameters at different m, or zoom positions, could
be modelled using the Sv function. Sturm [14] proposed the
following linear relationship between the intrinsic parameters:
Su = 1.466Sv; P0 = 0.060Sv + 184.44; Q0 = −0.007Sv +
273.19. According to this linear relationship, the idea of
using the polynomial magnification fitting function factor, m,
to find the transformation matrix between the image plane at
magnification factor m and the original focal plane (m = 1)
was generated in this study [15]. A simple calibration method
for acquiring the transformation function is also proposed.
This calibration procedure can not only significantly reduce
the calibration time, but can also flexibly acquire the system
parameters at any focus position with adequate measurement
accuracy. Based on this linear relationship, all of the
intrinsic parameters can be mathematically fitted using only
one variable, i.e., the magnification m. Details are described
in the following sections.

3.2. Determination of the laser beam centre

The laser beam intensity normally presents a Gaussian
distribution with TEM00 axial symmetry. The diameter is
about 1–2 mm. To acquire the centre position, general
approaches in image processing are the zero crossing (ZC)
method, the centroid method (CM) and the Fourier
phaseshift (FPS) method. The ZC method is subject to
ambient light disturbance. The CM method is sensitive to low-
frequency noises and is better for high-power lasers. The FPS
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Figure 4. Measured laser beam intensity distribution along cross
section.

method is more complex and requires larger system memory.
This study proposes the smooth curve fitting (SCF) method to
find the central position of the beam to the subpixel level.

An ideal laser line image captured by the CCD has a grey-
level distribution along the cross sections in Gaussian form
as

Ip = B exp

(

−(x − d)2

2σ 2

)

(6)

where d indicates the beam centre position in the X direction.
In practice, the Gaussian curve will be slightly distorted with
noise, as shown in figure 4. It is not correct to calculate
the ZC or centroid position directly from the captured image.
In nature, the grey level must observe the Gaussian law.
Therefore, a preliminary smoothing with a Gaussian curve
can eliminate all disturbances caused by the optical and
environmental components. Logarithmically, equation (6) can
be written as

ln Ip = ln B −
(x − d)2

2σ 2
. (7)

Let y = ln Ip, b = ln B and a = −1/2σ 2. Equation (7) can
be rewritten as

y = a(x − d)2 + b = a1x2 + a2x + a3. (8)

This is a parabolic function with a peak point at d . Using
this function to fit the measured grey-level data with the least-
squares method, the beam centre position d can be computed
to the subpixel level.

3.3. Calibration procedures

To acquire the exact space coordinates for different focus
positions, the VROPMS system parameters must be adjusted
simultaneously subject to the amount of zoom. The ordinary
approach is to individually determine the system parameters
with respect to each zoom position and enter this information in
a lookup table. This calibration procedure is, however, time-
consuming and tedious during system setup. In addition, it
provides only a discrete data bank suitable for certain particular
zoom positions. Therefore, a flexible and novel calibration
procedure for acquiring functional system parameters is
proposed in this study. The required calibration procedures
are divided into two steps. The objective of the first step is
to convert the image coordinate from the magnification factor
position, m, to its corresponding image coordinate at m = 1
using the ‘polynomial fitting functions’. The purpose of the
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Figure 5. Schematic diagram for calibrating VROPMS.
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Figure 6. Template with (10 × 3) calibrating points.

second step is to use the ‘coordinate mapping functions’ to
transform the 2D image data into corresponding 3D spatial
positions at the original focal plane (m = 1). Figure 5 gives a
schematic summary of the calibration procedures.

3.3.1. Calibration of the fitting function. Let (Um , Vm) be
the image pixel coordinate at various zoom positions with
magnification factors m. (U ∗

m , V ∗
m) is the corresponding

coordinate on the original focal plane (m = 1). The
image correlation between the original focus position and
the magnified focus position can be formulated by fitting
the polynomial functions as U ∗

m = FU (Um , Vm , m) and
V ∗

m = FV (Um , Vm , m). If the fitting functions are acquired,
the image coordinate (U ∗

m , V ∗
m) at the original focus position

can then be calculated. The proposed calibration method is
described below.

A laser stripe is projected onto the centre of a standard
template that has 10 horizontal lines and two vertical lines
generated by a laser writer with 1 µm line spacing accuracy, as
shown in figure 6. Each CCD camera captures the image and,
by image processing and least-squares computation, calculates
the intersection points between the three vertical dashed lines
and the 10 horizontal dashed lines. This will create 30 standard
points (Ur , Vr ) (r = 0, 1, . . . , 29) at the original focus position.

Let the correspondence between coordinates (Um , Vm) and
(U ∗

m , V ∗
m) be a linear relationship with the following form:

U ∗
m = f1(m) × Um + f2(m) × Vm + f3(m) (9)

V ∗
m = F1(m) × Um + F2(m) × Vm + F3(m) (10)

where fi and Fi (i = 1–3) are polynomial fitting functions
of magnification factor m. Because as m becomes larger, the
field of view of the (Um , Vm) coordinates become smaller, it is

reasonable to adopt a second-order inverse approximation to
correlate fi (m) and Fi (m). Equations (9) and (10) can be
rewritten as

U ∗
m = [(A1/m2) + (A2/m) + A3] × Um + [(A4/m2)

+(A5/m) + A6] × Vm + [(A7/m2) + (A8/m) + A9] (11)

V ∗
m = [(B1/m2) + (B2/m) + B3] × Um + [(B4/m2)

+(B5/m) + B6] × Vm + [(B7/m2) + (B8/m) + B9] (12)

where Ai and Bi (i = 1, 2, . . . , 9) are polynomial coefficients
of fi (m) and Fi (m).

For computing Ai and Bi , the focus position is
changed sequentially and the magnification m is varied
from 1 to 3 in seven designated steps (m =

1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0). Each designated focus
position has its own intersection points (Um,r , Vm,r ), 10 points
on each reference line for three lines. Thus, the approximated
linear fitting functions for each intersection point are expressed
as follows:

U ∗
m,r =

3
∑

i=1

(Ai/m3−i )Um,r +
6

∑

j=4

(A j/m6− j )Um,r

+
9

∑

k=7

Ak/m9−k (13)

V ∗
m,r =

3
∑

i=1

(Bi/m3−i )Um,r +
6

∑

j=4

(B j/m6− j )Um,r

+
9

∑

k=7

Bk/m9−k . (14)

The residuals Eu and Ev of U ∗
m,r and V ∗

m,r respectively

can be derived as Eu =
∑29

r=0

∑N
m=1

(

U ∗
m,r − Ur

)2
and Ev =

∑29
r=0

∑N
m=1

(

V ∗
m,r − Vr

)2
. The coefficients Ai and Bi can be

determined using least squares approximation: ∂ Eu/∂ Ai = 0
and ∂ Ev/∂ Bi = 0. Therefore, the related image coordinates
(U ∗

m,r , V ∗
m,r ) for any focus position that has magnification m

can be obtained.

3.3.2. Calibration of coordinate mapping function. The
calibration principle for the coordinate mapping functions is
shown in figure 7. A laser stripe is projected onto a standard
template design, and the CCD cameras detect the line image.
Because the distance between each horizontal line on the
standard template is known, the intersection point between
each horizontal line and the vertical laser line stripe indicates
a calibration point on the template. Since the template in
use is designed with 15 horizontal lines, the total number of
calibration points is 15. In the experiment, the template was
successively moved step-by-step along the Z -axis direction
to prescribed positions. At each Z -position, each CCD
camera captures the image and calculates the coordinates of all
calibration points. From the structural geometry in figure 7, it
can be seen that the X -coordinate component of a position in
space is constant throughout the scanned lines along the Y –Z
plane. Thus, only two space coordinate components (Y , Z )
need to be transformed from the data on the image plane using
the least-squares mapping algorithm.

Let (Yk , Zk) be a coordinate of the standard template in the
space plane, and (U ∗

k , V ∗
k ) the corresponding image coordinate
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Table 2. The average fitting errors of corresponded image coordinates (unit: pixel).

U V

Number Error Number Error Number Error Number Error

1 0.45 6 0.45 1 1.06 6 1.05
2 0.45 7 0.44 2 1.04 7 1.05
3 0.46 8 0.46 3 1.00 8 1.05
4 0.46 9 0.46 4 1.06 9 1.06
5 0.46 10 0.46 5 1.11 10 1.02

Average 0.45 Average 1.05

2σ 0.01 2σ 0.03
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Figure 7. Calibration principle for coordinate mapping function .

in the original focus plane. A mapping algorithm can then
be established using the least-squares polynomial function as
follows:

Y (U ∗
k , V ∗

k ) =

M
∑

j=0

M− j
∑

i=0

CYi j U
∗i
k V ∗ j

k (15)

Z(U ∗
k , V ∗

k ) =

M
∑

j=0

M− j
∑

i=0

CZi j U
∗i
k V ∗ j

k (16)

where Cyi j and Czi j are the coefficients of the polynomial
mapping functions, and M is the order of the approximated
polynomial function.

The residual error functions Ey and Ez of Y (U ∗
k , V ∗

k ) and
Z(U ∗

k , V ∗
k ) respectively can be obtained using

EY =

N
∑

k=0

(Yk − Y )2 EZ =

N
∑

k=0

(Zk − Z)2 (17)

where N is the total number of calibration points.
The coefficients Cyi j and Czi j can be determined from the

minimum error.

∂ EY

∂CYi j

= 0
∂ EZ

∂CZi j

= 0. (18)

From equations (15) and (16), the corresponding space
coordinate (Y , Z ) to each pixel position (U , V ) of the laser
beam image on each of the CCD planes can be determined.
Hence, with an X -position controlled line scanning system,

combining the determined Y and Z components with the
constant X component on each scanned line, the entire profile
can be formed by integrating the total measured data.

In summary, the VROPMS needs two data conversion
steps. In the first step, the image coordinates (Um , Vm)
for the focus position at magnification m can be detected
using CCD cameras. Substituting (Um , Vm) into the fitting
functions of equations (13) and (14), the corresponding image
coordinates (U ∗

m , V ∗
m) can be calculated. In the second step, the

corresponding space coordinates (Y , Z ) can be derived from
the image coordinates (U ∗

m , V ∗
m) using the coordinate mapping

functions from equations (15) and (16). Lastly, combining the
measured Y and Z components of each profile line from the
image information with the positioned X component from the
scanning stage, the entire profile can be formed with respect
to the focus position at magnification m.

4. Calibrated errors of VROPMS

4.1. Fitting function error analysis

In the experiment, the fitting function calibration procedure
was executed repeatedly 10 times. For each calibration proce-
dure, the VROPMS magnification was adjusted by assigning
m = 1.0, 1.25, 1.5, 1.75, 2.0, 2.5 and 3.0 sequentially to ob-
tain the image coordinates of each standard calibration point.
The coefficients Ai and Bi were computed and the correspond-
ing image coordinates (U ∗

m , V ∗
m) for each focus position were

determined. The average fitting errors (Eu , Ev) of the related
image coordinates were compared with the original image co-
ordinates in each calibration, as shown in table 2.

Table 2 shows that the fitting errors are approximately 0.45
and 1.05 pixels in the U and V directions respectively. The
repeatability is about 0.01–0.03 pixels with 95% confidence
level. It was found that larger fitting errors appeared on the
boundary points. This is probably caused by the lens distortion.
Therefore, the object should be placed as close to the centre of
the image as possible to increase the measurement accuracy of
the system.

In addition to the linear function approach, a nonlinear
function was also attempted to derive the fitting function. The
results, however, were no better than the linear case. Thus, the
assumption of a linear relationship of the intrinsic parameters
is satisfactory.

4.2. Mapping function error analysis

In this experiment (see figure 7), the calibration template was
moved step by step to 20 positions at 1.5 mm intervals along the
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Table 3. The absolute average error of mapping function (unit: mm).

Z Y

Number Error Number Error Number Error Number Error

1 0.092 6 0.090 1 0.036 6 0.036
2 0.090 7 0.094 2 0.039 7 0.038
3 0.086 8 0.094 3 0.043 8 0.038
4 0.093 9 0.091 4 0.041 9 0.041
5 0.086 10 0.094 5 0.037 10 0.040

Average 0.091 Average 0.039

2σ 0.003 2σ 0.002

Table 4. Average dimension measurement results with various
magnifications.

m Result (mm) Error (mm)

1.0 18.0872 0.0667
1.25 17.9687 −0.0523
1.5 17.9715 −0.0495
1.75 17.9830 −0.0380
2.0 18.0560 0.0350
2.5 18.0481 0.0271
3.0 17.9965 −0.0245
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Figure 8. The dimension accuracy with various magnifications.

Z -axis. The coefficients of the coordinate mapping functions
were determined using the minimum error functions with
equations (12)–(15). The calibration procedure was executed
repeatedly 10 times using the same fitting function parameters.
Each time the corresponding coordinates were calculated with
respect to the 15 calibration points. The absolute average
mapping errors of the corresponding coordinates to the original
real coordinates are shown in table 3.

The calibrated errors are approximately 0.091 and
0.039 mm in the Z - and Y -directions, respectively. The
repeatability is about 0.002–0.003 mm with 95% confidence.
Similar to the fitting function calibration, larger errors were
also found at the outer points.

4.3. System measurement errors

Standard objects were measured in the Y -axis and Z -axis
direction respectively to examine the in-plane dimension
accuracy and depth accuracy of the developed VROPMS.

4.3.1. In-plane dimension accuracy. A template with a
known etching length of 18.021 mm was fixed to examine the
in-plane measurement accuracy. The system magnification
was adjusted from 1.0 to 3.0 with a designated magnification
(m = 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0) and the template was
measured 10 times. The average measurement result for

Table 5. Average depth measurement results of various
magnifications.

m Results (mm) Error (mm)

1.0 1.9624 −0.0926
1.25 1.9810 −0.0740
1.5 1.9861 −0.0689
1.75 2.0058 −0.0492
2.0 2.0195 −0.0355
2.5 2.0201 −0.0349
3.0 2.0221 −0.0329
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Figure 9. The depth accuracy with various magnifications.

each magnification is shown in table 4. The dimension
accuracy of various magnifications is illustrated in figure 8.
The results show that dimension accuracy increases with
increased magnification and the measurement error for each
magnification is less than the corresponding theoretical camera
resolution (0.14 mm). Hence, for a complex profile object
that has a larger area of curvature, the system magnification
can be flexibly adjusted to carry out the local finer resolution
measurement for acquiring a more approximate surface model.

4.3.2. Depth accuracy. A plate with a thickness of
2.055 mm was used to examine the depth accuracy. The
plate was measured 10 times repeatedly with various
magnifications (m = 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0). The
average measurement results for each magnification are
shown in table 5. The tendency of the depth accuracy of
various magnifications is shown in figure 9. The depth
measurement error for each magnification is also smaller than
the corresponding theoretical camera resolution. Because the
horizontal image coordinates depend on the variation of depth,
the detected central laser position will dramatically influence
the depth accuracy. Although least-squares computation was
used, the detected laser centre position can be improved to
subpixel resolution, but the contribution is less than the result
in the Y -axis direction.

6



A variable-resolution optical profile measurement system

Figure 10. The measurement data points of a human sculpture using
VROPMS linear scanning.

The results of the experimental measurement show that
the system accuracy is about 0.07 and 0.09 mm in the Y -
axis and Z -axis directions respectively at the original focus
position. The system accuracy is approximately 0.03 mm when
the magnification m equals 3. Thus, the higher the system
magnification is, the finer the resolution that can be achieved.

5. Applications

A complex profile generally has a complicated curvature
distribution, such as the nose area of a human head sculpture.
In a larger curved area, the number of measured points must
be large enough to reconstruct an approximate surface model.
In other words, more measured points and a finer resolution
are required to describe a larger curved area. In practice, the
object was measured initially using VROPMS with a large
scanning interval using the original focus position. The slope
distribution of initial measured data can then be computed.
According to the result of the slope analysis, the larger curved
area can be identified and the zoom lens is adjusted to a higher
magnification considering the depth of field and optical limits
of the field of view to measure the identified area with a smaller
scanning interval. A series of sectional measurement images
that have different resolution meshes can therefore be acquired.
Through registering sectional measurement images using an
image-matching algorithm, an entire object profile that has
several different resolution areas can be integrated.

Figure 10 illustrates the measurement data points taken
using the VROPMS linear scanning measurement system [16]
with a pitch of 1 mm in the original focus position. The slope
distribution of the scanning profile is shown in figure 11. Both
figures 10 and 11 show that the ambient area near the nose has
a larger curved surface. In this case, the local steeper area is
about 5 mm × 15 mm, and the variation in the depth of the
object is about 10 mm. The resolution in this area is not sat-
isfactory. The system magnification was adjusted to 2 and the
nose area was scanned again with a pitch of 0.5 mm to form a
finer localized measurement, as shown in figure 12. There are
2142 points in the area of the lapping image. Consequently,

Figure 11. The slope distribution of a human sculpture.

Figure 12. Local measurement data points for the nose of a human
sculpture.

Figure 13. The merged data points of the human sculpture.

the localized measurement data must be stitched to the original
macro data. This principle is similar to the CAE analysis of
variable meshes for constructing an entire profile. Two various
mesh images are registered optimally using the optimum shape
error analysis [16]. The number of measured data points for
this sculpture with different meshes is shown in figure 13. The
results show that the approximate surface model for a larger
curved area can be made more lifelike using VROPMS and an
optimal image matching method.
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6. Conclusions

A flexible and novel variable resolution optical profile
measurement system and its application were proposed in this
study. The related image fitting function between the original
focus position and another focus position can be acquired
using the fitting function calibration procedure. The coordinate
mapping function calibration procedure can then be used to
obtain the space coordinate mapping function between the
space plane and the image plane. This combined calibration
procedure is quick and easy to use with promising system
accuracy. In practice, the total time for system calibration
is less than 10 min.

For measuring a complex 3D object, the VROPMS
can flexibly zoom in or out to measure an object profile
according to its slope distribution or the requirements of profile
approximation. The higher the adopted lens magnification, the
finer and more accurate the surface profile that can be acquired.
With the proposed fine and rough image matching algorithm,
the developed VROPMS provides better flexibility and is more
accurate for non-contact measurement.
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